8=1/2(1960)x^2

Simple and best practice solution for 8=1/2(1960)x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=1/2(1960)x^2 equation:



8=1/2(1960)x^2
We move all terms to the left:
8-(1/2(1960)x^2)=0
Domain of the equation: 21960x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/21960x^2+8=0
We multiply all the terms by the denominator
8*21960x^2-1=0
Wy multiply elements
175680x^2-1=0
a = 175680; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·175680·(-1)
Δ = 702720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{702720}=\sqrt{2304*305}=\sqrt{2304}*\sqrt{305}=48\sqrt{305}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48\sqrt{305}}{2*175680}=\frac{0-48\sqrt{305}}{351360} =-\frac{48\sqrt{305}}{351360} =-\frac{\sqrt{305}}{7320} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48\sqrt{305}}{2*175680}=\frac{0+48\sqrt{305}}{351360} =\frac{48\sqrt{305}}{351360} =\frac{\sqrt{305}}{7320} $

See similar equations:

| 2x(3x-1)+3x(2-x)=8 | | 24+k=81 | | 3n+4=19n=5 | | 3n+4=9n=5 | | x-8=22 | | |x-8|=22 | | 3(2x-3)+14x=5 | | -3(4+8n)=72-4n | | 3x-16=-3x+26 | | ?x12=8 | | (x/2)(x/3)=30 | | x*0.18=450 | | 5tt=10 | | 3b+23=56 | | 7n-3=13 | | -1/6f=-20 | | 4x-5=2(9x-3) | | 8a/3=2 | | 4x+7–6=5–4x+4 | | -1/2(30x-18)=9=15x | | -2z+(4z+7)+23= | | 5x+18-3x=30 | | 8(3x-5)-7(2x-8)=36 | | y=15-3(15) | | 5(n-1)=24 | | 0.5x÷4=0.8 | | 1-3(y-3)=0 | | 20(y-1)=8 | | –8m+7=7+6m | | 35=8p-5 | | f/44=27/33 | | 3/1=9/s |

Equations solver categories